

Aspen

Aspen is a filesystem dispatch library for Python web frameworks. Instead of
using regular expressions, decorators, or object traversal, Aspen dispatches
HTTP requests based on the natural symmetry of URL paths and filesystem paths.
In the immortal words [https://twitter.com/progrium/status/773694289033383937] of Jeff Lindsay, “so like. a web server.” Yes! ;-)

This is the documentation for the development version of the core Aspen
library, describing its filesystem dispatch behavior regardless of the web
framework you’re using it with. For instructions on configuring Aspen with a
specific web framework, see the docs for django-aspen [http://django.aspen.io/], Flask-Aspen [http://flask.aspen.io/], or
Pando [http://pando.aspen.io/]. See the project homepage [http://aspen.io/] for an overview.

This version of Aspen has been tested with Python 3.6, 3.7, 3.8 and 3.9, on both
Ubuntu and Windows.

Aspen’s source code is on GitHub [https://github.com/AspenWeb/aspen.py], and is MIT-licensed [https://github.com/AspenWeb/aspen.py/blob/master/COPYRIGHT].

Installation

Aspen is available on PyPI [https://pypi.python.org/pypi/aspen]:

$ pip install aspen

Contents

	Filesystem Dispatch Rules
	Dynamic Resources

	Path Variables

	Ready for Simplates?

	How to Write a Simplate
	Sections of a Simplate

	Context

	Standard Renderers

	Specline Defaults

	Content Negotiation

	How to Write a Plugin

	How to Write a Framework Wrapper

	API Reference
	aspen.http

	aspen.request_processor

	aspen.request_processor.dispatcher

	aspen.request_processor.typecasting

	aspen.simplates

	aspen.output

	aspen.testing

	aspen.exceptions

See Also

The Keystone [http://keystone.readthedocs.org/] web framework was inspired by Aspen.

Filesystem Dispatch Rules

Aspen dispatches web requests to the filesystem based on paths. For simple
cases this is straightforward: /foo.html in the browser will find
foo.html in the publishing root on your filesystem, and serve the file
statically. There are a couple wrinkles, however. What about dynamic
resources? And what about variable path parts?

Note

This is a tutorial. Please refer to our test table for the complete dispatch rules [https://raw.githubusercontent.com/AspenWeb/aspen.py/master/tests/dispatch_table_data.rst].

Dynamic Resources

Sometimes you want the URL path /foo.html to find a static HTML file. More
frequently, you want it to serve a dynamic resource. Aspen uses the
simplates file format to model dynamic resources, and Aspen knows a file is
a simplate because of a .spt extension: /foo.html will find
foo.html.spt if it exists. If you ask for /foo.html.spt directly,
however, you’ll get a 404.

But what happens if you have both of the following on your filesystem?

	foo.html

	foo.html.spt

When you ask for /foo.html, which one will you get? Which file will Aspen
use to represent the resource? The answer is foo.html. The principle is
“most specific wins”. The dynamic resource could actually serve other content
types (despite the .html in the filename), whereas the static resource will
only result in an HTML representation.

Now how about this one: what happens if you ask for /foo.html with these
two on your filesystem?

	foo.html.spt

	foo.spt

You guessed it: foo.html.spt. Even though both are dynamic resources, and
both could technically result in any content type representation, the former is
likely to result in just HTML. Aspen therefore considers it to be more
specific, and to match it before the more general foo.spt.

Now let’s say you only have:

	foo.spt

That simplate will answer for /foo.html. But! It will also answer for
/foo.json, /foo.csv, /foo.xml, etc. One simplate can serve multiple
content type representations of the same resource. The simplate docs explain
how, but before we get there, let’s talk about path variables.

Path Variables

It’s common in web applications to use parts of the URL path to pass variables
to a dynamic resource. For example, the 2016 in
/blog/2016/some-post.html will want to end up as a year variable in
your code, and some-post perhaps as slug. Since Aspen uses the
filesystem for dispatch, you define these variables on the filesystem. You use
the % (percent) character for this.

For the blog URL example, we might have the following simplate on our
filesystem:

	blog/%year/%slug.html.spt

Aspen matches from % to the end of the path part or a file extension,
whichever comes first. Now, inside your simplate, you will have access to
year and slug variables containing the values from the URL path.

Typecasting

URL path parts are strings, but sometimes you want to convert to a different
data type. Aspen provides for this by looking for special file extensions
following the % variable: .int and .float are supported by default.

If our simplate for the blog example was at:

	blog/%year.int/%slug.html.spt

Then the year variable inside our simplate would be an integer instead of a
string.

Ready for Simplates?

Aspen serves static files directly, and dynamic files using simplates
(.spt), with path variables based on special % names on the filesystem.
With those basics in place, it’s clearly time to write a simplate!

How to Write a Simplate

Aspen dispatches web requests to files on the filesystem based on paths, but
what kind of files does it expect to find there? The answer is simplates.
Simplates are a file format combining request processing logic—like you’d
find in a Django view [https://docs.djangoproject.com/en/1.10/topics/http/views/] or a Rails controller [http://guides.rubyonrails.org/action_controller_overview.html]—with template code, in one
file with multiple sections.

Note

Check the Aspen homepage for links to simplate support for your favorite
text editor [http://aspen.io/].

Sections of a Simplate

What are the sections of a simplate? Let’s illustrate by example:

import random

[----------------------------------]
program = querystring['program']
excitement = '!' * random.randint(1, 10)

[----] text/html via stdlib_template
<h1>Greetings, $program$excitement</h1>

[-----] text/plain via stdlib_format
Greetings, {program}{excitement}

[---] application/json via json_dump
{"program": program, "excitement": excitement}

The first thing to notice is that the file is separated into multiple sections
using lines that begin with the characters [---]. There must be at least
three dashes, but more are fine.

Sections in a simplate are either “logic sections” or “content sections”.
Content sections may have a “specline” after the [---] separator. The
format of the specline is content-type via renderer. The syntax of the
content sections depends on the renderer. The logic sections are Python.

A simplate may have one or more sections. Here are the rules for determining
which section is what:

	If a simplate only has one section, it’s a content section.

	If a simplate has two sections, the first is request logic (runs for
every request), and the second is a content section.

	If a simplate has more than two sections:

	If the second section has a specline, then the first is request logic, and
the rest are content sections.

	If the second section has no specline, then the first is initialization
logic (runs once when the page is first hit), the second is request
logic, and the rest are content sections.

Putting that all together, we see that the above example has five sections:

	a logic section containing Python that will run once when the page is first hit,

	a request section containing Python that will run every time the page is hit,

	a section for rendering text/html via Python templates,

	a section for rendering text/plain via new-style Python string formatting, and

	a section for rendering application/json via Python’s json [https://docs.python.org/3/library/json.html#module-json] library.

Context

The power of simplates is that objects you define in the logic sections are
automatically available to the templates in your content sections. The above
example illustrates this with the program and excitement variables.
Moreover, Aspen makes various objects available to the logic sections of your
simplates (besides the Python builtins).

Here’s what you get:

	path—a representation of the URL path

	querystring—a representation of the URL querystring

	request_processor—a RequestProcessor instance

	resource—a representation of the HTTP resource

	state—the dictionary that contains the request state

Framework wrappers will add their own objects, as well.

Standard Renderers

Aspen includes five renderers out of the box:

	json_dump—takes Python syntax, runs it through eval and then
json.dumps

	jsonp_dump—takes Python syntax, runs it through eval and
json.dumps, and then wraps it in a JSONP callback if one is specified in
the querystring (as either callback or jsonp)

	stdlib_format—takes a Python string, runs it through format-style [https://docs.python.org/3/library/string.html#format-string-syntax]
string replacement

	stdlib_percent—takes a Python string, runs it through percent-style [https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting]
string replacement

	stdlib_template—takes a Python string, runs it through
template-style [https://docs.python.org/3/library/string.html#template-strings] string replacement

Note

Check the Aspen homepage for links to plugins for other renderers [http://aspen.io/].

Specline Defaults

Speclines are optional. The defaults … I guess we should point to the API
reference for this. And the framework wrappers will have something to say about
this, as well.

Content Negotiation

Aspen negotiates with clients to determine how to best represent a resource for
a given request. Aspen models resources using simplates, and the content
sections of the simplate determine the available representations. Here are the
rules for negotiation:

	If the URL path includes a file extension, Aspen looks in the Python
mimetypes registry for a content type associated with the extension. If the
extension is not in the registry, Aspen responds with 404 Not Found. If
the extension is in the registry, Aspen looks for a match against the
corresponding type. If no content section provides the requested
representation, Aspen again responds with 404 Not Found.

	If the URL path does not include a file extension and there are multiple
available types, Aspen turns to the Accept header. If the Accept
header is missing or malformed, Aspen responds using the first available
content section. If the Accept header is valid, Aspen looks for a match.
If no content section provides an acceptable representation, Aspen responds
with 406 Not Acceptable.

	If the URL path includes a file extension but there is only one available
type, then Aspen ignores the Accept header (as the spec allows [https://tools.ietf.org/html/rfc7232#section-5.3.2]),
responding with the only available representation.

Note

Aspen delegates to the python-mimeparse [https://pypi.python.org/pypi/python-mimeparse] library to determine the best
available match for a given media range.

How to Write a Plugin

This document is for people who want to write a plugin for Aspen. If you only
want to use Aspen with existing plugins, then … what?

Negotiated and rendered resources have content pages the bytes for which are
transformed based on context. The user may explicitly choose a renderer per
content page, with the default renderer per page computed from its media type.
Template resources derive their media type from the file extension. Negotiated
resources have no file extension by definition, so they specify the media type
of their content pages in the resource itself, on the so-called “specline” of
each content page, like so:

[---]
[---] text/plain
Greetings, program!
[---] text/html
<h1>Greetings, program!</h1>

A Renderer is instantiated by a Factory, which is a class that is itself
instantied with one argument:

configuration an Aspen configuration object

Instances of each Renderer subclass are callables that take five arguments and
return a function (confused yet?). The five arguments are:

factory the Factory creating this object
filepath the filesystem path of the resource in question
raw the bytestring of the page of the resource in question
media_type the media type of the page
offset the line number at which the page starts

Each Renderer instance is a callable that takes a context dictionary and
returns a bytestring of rendered content. The heavy lifting is done in the
render_content method.

Here’s how to implement and register your own renderer:

from aspen.simplates.renderers import Renderer, Factory

class Cheese(Renderer):
 def render_content(self, context):
 return self.raw.replace("cheese", "CHEESE!!!!!!")

class CheeseFactory(Factory):
 Renderer = Cheese

request_processor.renderer_factories['excited-about-cheese'] = CheeseFactory(request_processor)

Put that in your startup script. Now you can use it in a negotiated or rendered
resource:

[---] via excited-about-cheese
I like cheese!

Out will come:

I like CHEESE!!!!!!!

If you write a new renderer for inclusion in the base Aspen distribution,
please work with Aspen’s existing reloading machinery, etc. as much as
possible. Use the existing template shims as guidelines, and if Aspen’s
machinery is inadequate for some reason let’s evolve the machinery so all
renderers behave consistently for users. Thanks.

How to Write a Framework Wrapper

This document is for people who want to write a framework wrapper for Aspen. If
you only want to use Aspen with an existing framework wrapper, then the
Dispatch and Simplates documents should
cover what you need.

API Reference

The primary class that the aspen library provides is
RequestProcessor. See
testing for helpers to integrate Aspen into your framework’s
testing infrastructure, and see the exceptions module for all
exceptions that Aspen raises.

	aspen.http

	aspen.request_processor

	aspen.request_processor.dispatcher

	aspen.request_processor.typecasting

	aspen.simplates

	aspen.output

	aspen.testing

	aspen.exceptions

aspen.http

	
class aspen.http.mapping.Mapping

	Base class for HTTP mappings.

Mappings in HTTP differ from Python dictionaries in that they may have one
or more values. This dictionary subclass maintains a list of values for
each key. However, access semantics are asymmetric: subscript assignment
clobbers to list, while subscript access returns the last item. Think
about it.

Warning

This isn’t thread-safe.

	
keyerror(key)

	Called when a key is missing. Default implementation simply reraises.

	
pop(name, default=<object object>)

	Given a name, return a value.

This removes the last value from the list for name and returns it. If
there was only one value in the list then the key is removed from the
mapping. If name is not present and default is given, that is returned
instead. Otherwise, self.keyerror is called.

	
popall()

	D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

	
all(name)

	Given a name, return a list of values, possibly empty.

	
get(name, default=None)

	Override to only return the last value.

	
add(name, value)

	Given a name and value, clobber any existing values with the new one.

	
ones(*names)

	Given one or more names of keys, return a list of their values.

	
class aspen.http.request.PathPart

	Represents a segment of a URL path.

	
params

	extra data attached to this segment

	Type

	Mapping

	
aspen.http.request.extract_rfc2396_params(path)

	This function implements parsing URL path parameters, per section 3.3 of RFC2396 [https://tools.ietf.org/html/rfc3986#section-3.3].

	path should be raw so we don’t split or operate on a decoded character

	output is decoded

Example:

>>> path = '/frisbee;color=red;size=small/logo;sponsor=w3c;color=black/image.jpg'
>>> extract_rfc2396_params(path) == [
... PathPart('frisbee', params={'color': ['red'], 'size': ['small']}),
... PathPart('logo', params={'sponsor': ['w3c'], 'color': ['black']}),
... PathPart('image.jpg', params={})
...]
True

	
aspen.http.request.split_path_no_params(path)

	This splits a path into parts on “/” only (no split on “;” or “,”).

	
class aspen.http.request.Path(raw, split_path=<function extract_rfc2396_params>)

	Represent the path of a resource.

	
raw

	the unparsed form of the path - str [https://docs.python.org/3/library/stdtypes.html#str]

	
decoded

	the decoded form of the path - str [https://docs.python.org/3/library/stdtypes.html#str]

	
parts

	the segments of the path - list [https://docs.python.org/3/library/stdtypes.html#list] of PathPart objects

	
class aspen.http.request.Querystring(raw, errors='replace')

	Represent an HTTP querystring.

	
raw

	the unparsed form of the querystring - str [https://docs.python.org/3/library/stdtypes.html#str]

	
decoded

	the decoded form of the querystring - str [https://docs.python.org/3/library/stdtypes.html#str]

	
aspen.http.resource.open_resource(request_processor, resource_path)

	Open a resource in read-only binary mode, after checking for symlinks.

	Raises

	AttemptedBreakout – if the resource_path points to a file that isn’t inside any of
the known
resource_directories

This function doesn’t fully protect against attackers who have the ability
to create and delete symlinks inside the resource directories whenever they
want, but it makes the attack more difficult and detectable.

	
aspen.http.resource.check_resource_path(request_processor, resource_path)

	Return the “real” path of a file (i.e. a path without symlinks).

	Raises

	AttemptedBreakout – if the resource_path points to a file that isn’t inside any of
the known
resource_directories

	
class aspen.http.resource.Static(request_processor, fspath)

	Model a static HTTP resource.

	
render(*ignored)

	Returns the file’s content as bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

If the store_static_files_in_ram configuration option was set to
False [https://docs.python.org/3/library/constants.html#False] (the default), then the file is read from the filesystem,
otherwise its content is returned directly.

	
class aspen.http.resource.Dynamic

	Model a dynamic HTTP resource.

	
render(context, dispatch_result, accept_header)

	Render the resource.

Before rendering we need to determine what type of content we’re going
to send back, by trying to find a match between the media types the
client wants and the ones provided by the resource.

The two sources for what the client wants are the extension in the
request URL (dispatch_result.extension), and the Accept
header (accept_header). If the former fails to match we raise
NotFound (404), if the latter fails we raise
NegotiationFailure (406).

Note that we don’t always respect the Accept header (the spec says
we can ignore it: <https://tools.ietf.org/html/rfc7231#section-5.3.2>).

	Parameters

	
	context (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the variables you want to pass to the resource

	dispatch_result (DispatchResult) – the object returned by the dispatcher

	accept_header (str [https://docs.python.org/3/library/stdtypes.html#str]) – the requested media types

Returns: an Output object.

aspen.request_processor

The request processor dispatches requests to the filesystem, typecasts URL
path variables, loads the resource from the filesystem, and then renders and
encodes the resource (if it’s dynamic).

	
class aspen.request_processor.RequestProcessor(**kwargs)

	A core request processor designed for integration into a host framework.

The kwargs are for configuration, see DefaultConfiguration
for valid keys and default values.

	
dispatch(path)

	Call the dispatcher and inject the path variables into the given path object.

	Parameters

	path (Path) – the requested path, e.g. '/foo'

	Returns

	A DispatchResult object.

	
process(path, querystring, accept_header, context)

	Process a request.

	Parameters

	
	path (Path) – the requested path, e.g. Path('/foo')

	querystring (Querystring) – the query parameters, e.g. Querystring('?bar=baz')

	accept_header (str [https://docs.python.org/3/library/stdtypes.html#str]) – the value of the HTTP header Accept

	context (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the context variables passed to dynamic resources

	Returns

	A 3-tuple (dispatch_result, resource, output). The latter two are
set to None [https://docs.python.org/3/library/constants.html#None] if dispatching failed.

	
is_dynamic(fspath)

	Given a filesystem path, return a boolean.

	
get_resource_class(fspath)

	Given a filesystem path, return a resource class.

	
guess_media_type(filename)

	Guess the media type of a file by looking at its extension.

This method is a small wrapper around mimetypes.guess_type() [https://docs.python.org/3/library/mimetypes.html#mimetypes.guess_type]. It
returns media_type_default if the guessing
fails.

	
class aspen.request_processor.DefaultConfiguration

	Default configuration values.

	
changes_reload = False

	Reload files on every request if they’ve been modified. This can be costly,
so it should be turned off in production.

	
charset_static = None

	The charset of your static files. It ends up as a charset= parameter in
Content-Type HTTP headers (if the framework on top of Aspen supports that).

	
dispatcher_class = None

	The kind of dispatcher that will be used to route requests to files. By
default UserlandDispatcher is used, unless changes_reload is
set to True, then HybridDispatcher is used.

	
encode_output_as = 'UTF-8'

	The encoding to use for dynamically-generated output.

	
indices = ['index.html', 'index.json', 'index', 'index.html.spt', 'index.json.spt', 'index.spt']

	List of file names that will be treated as directory indexes. The order matters.

	
media_type_default = 'text/plain'

	If the Content-Type of a response can’t be determined, then this one is used.

	
media_type_json = 'application/json'

	The media type to use for the JSON format.

	
project_root = None

	The root directory of your project.

	
renderer_default = 'stdlib_percent'

	The default renderer for simplates.

	
resource_directories = []

	The list of directories containing resource files. Aspen will refuse to load
any resource located outside these directories. The www_root directory is
automatically added to this list. The project_root directory is added as
well if it exists.

	
store_static_files_in_ram = False

	If set to True, store the contents of static files in RAM.

	
typecasters = {'float': <function <lambda>>, 'int': <function <lambda>>}

	See aspen.request_processor.typecasting.

	
www_root = None

	The root directory of your web app, containing the files it will serve.
Defaults to the current directory.

aspen.request_processor.dispatcher

This module implements finding the file that matches a request path.

	
aspen.request_processor.dispatcher.strip_matching_ext(a, b)

	Given two names, strip a trailing extension iff they both have them.

	
class aspen.request_processor.dispatcher.DispatchStatus

	The attributes of this class are constants that represent dispatch statuses.

	
okay = okay

	Found a matching file.

	
missing = missing

	No match found.

	
unindexed = unindexed

	Found a matching node, but it’s a directory without an index.

	
class aspen.request_processor.dispatcher.DispatchResult(status, match, wildcards, extension, canonical)

	The result of a dispatch operation.

	
status

	A DispatchStatus constant encoding the overall result.

	
match

	The matching filesystem path (if status != ‘missing’).

	
wildcards

	A dict whose keys are wildcard names, and values are as supplied by the path.

	
extension

	A file extension, e.g. json when foo.spt is matched to foo.json.

	
canonical

	The canonical path of the resource, e.g. / for /index.html.

	
class aspen.request_processor.dispatcher.FileNode(fspath, type, wildcard, extension)

	Represents a file in a dispatch tree.

	
fspath

	The absolute filesystem path of this node.

	
type

	‘dynamic’ or ‘static’.

	Type

	The node’s type

	
wildcard

	The name of the path variable if the node is a wildcard.

	
extension

	The sub-extension of a dynamic file, e.g. json for foo.json.spt.

	
class aspen.request_processor.dispatcher.DirectoryNode(fspath, wildcard, children)

	Represents a directory in a dispatch tree.

	
fspath

	The absolute filesystem path of this node.

	
wildcard

	The name of the path variable if the node is a wildcard.

	
children

	The node’s children as a dict (keys are names and values are nodes).

	
class aspen.request_processor.dispatcher.LiveDirectoryNode(fspath, wildcard, children, mtime, dispatcher)

	Dynamically represents a directory in a dispatch tree.

	
fspath

	The absolute filesystem path of this node.

	
wildcard

	The name of the path variable if the node is a wildcard.

	
mtime

	The last modification time of the directory, in nanoseconds.

	
dispatcher

	Points to the Dispatcher object that created this node.

	
aspen.request_processor.dispatcher.legacy_collision_handler(slug, node1, node2)

	Ignores all collisions, like SystemDispatcher does.

	
aspen.request_processor.dispatcher.strict_collision_handler(*args)

	A sane collision handler, it doesn’t allow any.

	
aspen.request_processor.dispatcher.hybrid_collision_handler(slug, node1, node2)

	This collision handler allows a static file to shadow a dynamic resource.

Example: /file.js will be preferred over /file.js.spt.

	
aspen.request_processor.dispatcher.skip_hidden_files(name, dirpath)

	Skip all names starting with a dot, except .well-known.

	
aspen.request_processor.dispatcher.skip_nothing(name, dirpath)

	Always returns False [https://docs.python.org/3/library/constants.html#False].

	
class aspen.request_processor.dispatcher.Dispatcher(www_root, is_dynamic, indices, typecasters, file_skipper=<function skip_hidden_files>, collision_handler=<function hybrid_collision_handler>)

	The abstract base class of dispatchers.

	Parameters

	
	www_root – the path to a filesystem directory

	is_dynamic – a function that takes a file name and returns a boolean

	indices – a list of filenames that should be treated as directory indexes

	typecasters – a dict of typecasters, keys are strings and values are functions

	file_skipper – a function that takes a file name and a directory path and returns a boolean

	collision_handler – a function that takes 3 arguments (slug, node1, node2) and returns a string

	
build_dispatch_tree()

	Called to build the dispatch tree.

Subclasses must implement this method.

	
dispatch(path, path_segments)

	Dispatch a request.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the request path, e.g. '/'

	path_segments (list [https://docs.python.org/3/library/stdtypes.html#list]) – the path split into segments, e.g. ['']

Subclasses must implement this method.

	
find_index(dirpath)

	Looks for an index file in a directory.

	Returns

	the full path of the first index file, or None [https://docs.python.org/3/library/constants.html#None] if no index was found

	
split_wildcard(wildcard, is_dir)

	Splits a wildcard into its components.

	Parameters

	
	wildcard (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string to split, e.g. 'year.int'

	is_dir (bool [https://docs.python.org/3/library/functions.html#bool]) – True [https://docs.python.org/3/library/constants.html#True] if the wildcard is from a directory name

	Returns

	a 3-tuple (varname, vartype, extension)

	
class aspen.request_processor.dispatcher.SystemDispatcher(www_root, is_dynamic, indices, typecasters, file_skipper=<function skip_hidden_files>, collision_handler=<function hybrid_collision_handler>)

	Aspen’s original dispatcher, it’s very inefficient.

	
class aspen.request_processor.dispatcher.UserlandDispatcher(www_root, is_dynamic, indices, typecasters, file_skipper=<function skip_hidden_files>, collision_handler=<function hybrid_collision_handler>)

	A dispatcher optimized for production use.

This dispatcher builds a complete and static tree when it is first created.
It then uses this dispatch tree to route requests without making any system
call, thus avoiding FFI and context switching costs.

This is the default dispatcher (when the changes_reload configuration
option is False).

	
class aspen.request_processor.dispatcher.HybridDispatcher(www_root, is_dynamic, indices, typecasters, file_skipper=<function skip_hidden_files>, collision_handler=<function hybrid_collision_handler>)

	A dispatcher optimized for development environments.

This dispatcher is almost identical to UserlandDispatcher, except
that it does make some system calls to check that the matched filesystem
directories haven’t been modified. If changes are detected, then the
dispacth tree is updated accordingly.

This is the default dispatcher when the changes_reload configuration
option is set to True.

	
class aspen.request_processor.dispatcher.TestDispatcher(*args, **kw)

	This pseudo-dispatcher calls all the other dispatchers and checks that their
results are identical. It’s only meant to be used in Aspen’s own tests.

aspen.request_processor.typecasting

This module handles the parsing of path variables.

	
aspen.request_processor.typecasting.defaults = {'float': <function <lambda>>, 'int': <function <lambda>>}

	Aspen’s default typecasters.

	
aspen.request_processor.typecasting.apply_typecasters(typecasters, path_vars, context)

	Perform typecasting (in-place!).

	Parameters

	
	typecasters – a dict [https://docs.python.org/3/library/stdtypes.html#dict] of type names to typecast functions

	path_vars – a Mapping of path variables

	context – a dict [https://docs.python.org/3/library/stdtypes.html#dict] passed to typecast functions as second argument

	Raises

	TypecastError – if a typecast function raises an exception

aspen.simplates

	
class aspen.simplates.simplate.Simplate(request_processor, fspath)

	A simplate is a dynamic resource with multiple syntaxes in one file.

	Parameters

	fspath (str [https://docs.python.org/3/library/stdtypes.html#str]) – the absolute filesystem path of this simplate

	
render_for_type(media_type, context)

	Render the simplate.

	Parameters

	
	media_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the media type of the page to render

	context (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – execution context values you wish to supply

Returns: an Output object.

	
parse_into_pages(decoded)

	Given a bytestring that is the entire simplate, return a list of pages.

If there’s one page, it’s a template.

If there’s more than one page, the first page is always python and the
last is always a template.

If there’s more than two pages, the second page is python unless it has
a specline, which makes it a template.

	
compile_pages(pages)

	Given a list of pages, replace the pages with objects.

Page 0 is the ‘run once’ page - it is executed and the resulting
context stored in self.pages[0].

Page 1 is the ‘run every’ page - it is compiled for easier execution
later, and stored in self.pages[1].

Subsequent pages are templates, so each one’s content type and
respective renderer are stored as a tuple in self.pages[n].

	
compile_page(page)

	Given a Page, return a (renderer, media_type) pair.

	
aspen.simplates.renderers.factories(configuration)

	return a dict of render factory names to the factories themselves

	
class aspen.simplates.renderers.Renderer(factory, filepath, raw, media_type, offset)

	The base class of renderers.

	
compile(filepath, padded)

	Override.

Whatever you return from this will be set on self.compiled the first
time the renderer is called. If changes_reload is True then this will
be called every time the renderer is called. You can then use
self.compiled in your render_content method as needed.

	
render_content(context)

	Override. Context is a dict.

You can use these attributes:

self.raw the raw bytes of the content page
self.compiled the result of self.compile (generally a template in
 compiled object form)
self.meta the result of Factory.compile_meta
self.media_type the media type of the page
self.offset the line number at which the page starts

	
class aspen.simplates.renderers.Factory(configuration)

	The base class of renderer factories.

	
class Renderer(factory, filepath, raw, media_type, offset)

	The base class of renderers.

	
compile(filepath, padded)

	Override.

Whatever you return from this will be set on self.compiled the first
time the renderer is called. If changes_reload is True then this will
be called every time the renderer is called. You can then use
self.compiled in your render_content method as needed.

	
render_content(context)

	Override. Context is a dict.

You can use these attributes:

self.raw the raw bytes of the content page
self.compiled the result of self.compile (generally a template in
 compiled object form)
self.meta the result of Factory.compile_meta
self.media_type the media type of the page
self.offset the line number at which the page starts

	
compile_meta(configuration)

	Takes a configuration object. Override as needed.

Whatever you return from this will be set on self.meta the first time
the factory is called, or every time if changes_reload is True. You can
then use self.meta in your Renderer class as needed.

aspen.output

	
class aspen.output.Output(body=None, media_type=None, charset=None)

	The result of rendering a resource.

aspen.testing

This module provides helpers for testing applications that use Aspen.

	
aspen.testing.teardown()

	Standard teardown function.

	reset the current working directory

	remove FSFIX = %{tempdir}/fsfix

	clear out sys.path_importer_cache

	
class aspen.testing.Harness

	A harness to be used in the Aspen test suite itself. Probably not useful to you.

	
simple(contents='Greetings, program!', filepath='index.html.spt', uripath=None, querystring='', request_processor_configuration=None, **kw)

	A helper to create a file and hit it through our machinery.

	
aspen.testing.chdir(path)

	A context manager that temporarily changes the working directory.

aspen.exceptions

This module defines all of the custom exceptions used across the Aspen library.

	
exception aspen.exceptions.ConfigurationError(msg)

	This is an error in any part of our configuration.

	
exception aspen.exceptions.NegotiationFailure(accept, available_types)

	The requested media type isn’t available (HTTP status code 406).

	
exception aspen.exceptions.TypecastError(extension)

	Parsing a segment of the request path failed (HTTP status code 404).

	
exception aspen.exceptions.NotFound(message='')

	The requested resource isn’t available (HTTP status code 404).

	
exception aspen.exceptions.AttemptedBreakout(sym_path, real_path)

	Raised when a request is dispatched to a symlinked file which is outside
www_root.

	
exception aspen.exceptions.PossibleBreakout(sym_path, real_path)

	A warning emitted when a symlink that points outside
www_root is detected.

	
exception aspen.exceptions.SlugCollision(slug, node1, node2)

	Raised if two files claim the same URL path.

Example: foo.html and foo.html.spt both claim /foo.html.

	
exception aspen.exceptions.WildcardCollision(varname, fspath)

	Raised if a filesystem path contains multiple wildcards with the same name.

Examples: www/%foo/%foo/index.spt, www/%foo/bar/%foo.spt.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aspen	

 	
 	
 aspen.exceptions	

 	
 	
 aspen.http.mapping	

 	
 	
 aspen.http.request	

 	
 	
 aspen.http.resource	

 	
 	
 aspen.output	

 	
 	
 aspen.request_processor	

 	
 	
 aspen.request_processor.dispatcher	

 	
 	
 aspen.request_processor.typecasting	

 	
 	
 aspen.simplates.renderers	

 	
 	
 aspen.simplates.simplate	

 	
 	
 aspen.testing	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	add() (aspen.http.mapping.Mapping method)

 	all() (aspen.http.mapping.Mapping method)

 	apply_typecasters() (in module aspen.request_processor.typecasting)

 	aspen.exceptions (module)

 	aspen.http.mapping (module)

 	aspen.http.request (module)

 	aspen.http.resource (module)

 	
 	aspen.output (module)

 	aspen.request_processor (module)

 	aspen.request_processor.dispatcher (module)

 	aspen.request_processor.typecasting (module)

 	aspen.simplates.renderers (module)

 	aspen.simplates.simplate (module)

 	aspen.testing (module)

 	AttemptedBreakout

B

 	
 	build_dispatch_tree() (aspen.request_processor.dispatcher.Dispatcher method)

C

 	
 	canonical (aspen.request_processor.dispatcher.DispatchResult attribute)

 	changes_reload (aspen.request_processor.DefaultConfiguration attribute)

 	charset_static (aspen.request_processor.DefaultConfiguration attribute)

 	chdir() (in module aspen.testing)

 	check_resource_path() (in module aspen.http.resource)

 	children (aspen.request_processor.dispatcher.DirectoryNode attribute)

 	
 	compile() (aspen.simplates.renderers.Factory.Renderer method)

 	(aspen.simplates.renderers.Renderer method)

 	compile_meta() (aspen.simplates.renderers.Factory method)

 	compile_page() (aspen.simplates.simplate.Simplate method)

 	compile_pages() (aspen.simplates.simplate.Simplate method)

 	ConfigurationError

D

 	
 	decoded (aspen.http.request.Path attribute)

 	(aspen.http.request.Querystring attribute)

 	DefaultConfiguration (class in aspen.request_processor)

 	defaults (in module aspen.request_processor.typecasting)

 	DirectoryNode (class in aspen.request_processor.dispatcher)

 	dispatch() (aspen.request_processor.dispatcher.Dispatcher method)

 	(aspen.request_processor.RequestProcessor method)

 	
 	dispatcher (aspen.request_processor.dispatcher.LiveDirectoryNode attribute)

 	Dispatcher (class in aspen.request_processor.dispatcher)

 	dispatcher_class (aspen.request_processor.DefaultConfiguration attribute)

 	DispatchResult (class in aspen.request_processor.dispatcher)

 	DispatchStatus (class in aspen.request_processor.dispatcher)

 	Dynamic (class in aspen.http.resource)

E

 	
 	encode_output_as (aspen.request_processor.DefaultConfiguration attribute)

 	extension (aspen.request_processor.dispatcher.DispatchResult attribute)

 	(aspen.request_processor.dispatcher.FileNode attribute)

 	
 	extract_rfc2396_params() (in module aspen.http.request)

F

 	
 	factories() (in module aspen.simplates.renderers)

 	Factory (class in aspen.simplates.renderers)

 	Factory.Renderer (class in aspen.simplates.renderers)

 	FileNode (class in aspen.request_processor.dispatcher)

 	
 	find_index() (aspen.request_processor.dispatcher.Dispatcher method)

 	fspath (aspen.request_processor.dispatcher.DirectoryNode attribute)

 	(aspen.request_processor.dispatcher.FileNode attribute)

 	(aspen.request_processor.dispatcher.LiveDirectoryNode attribute)

G

 	
 	get() (aspen.http.mapping.Mapping method)

 	
 	get_resource_class() (aspen.request_processor.RequestProcessor method)

 	guess_media_type() (aspen.request_processor.RequestProcessor method)

H

 	
 	Harness (class in aspen.testing)

 	
 	hybrid_collision_handler() (in module aspen.request_processor.dispatcher)

 	HybridDispatcher (class in aspen.request_processor.dispatcher)

I

 	
 	indices (aspen.request_processor.DefaultConfiguration attribute)

 	
 	is_dynamic() (aspen.request_processor.RequestProcessor method)

K

 	
 	keyerror() (aspen.http.mapping.Mapping method)

L

 	
 	legacy_collision_handler() (in module aspen.request_processor.dispatcher)

 	
 	LiveDirectoryNode (class in aspen.request_processor.dispatcher)

M

 	
 	Mapping (class in aspen.http.mapping)

 	match (aspen.request_processor.dispatcher.DispatchResult attribute)

 	media_type_default (aspen.request_processor.DefaultConfiguration attribute)

 	
 	media_type_json (aspen.request_processor.DefaultConfiguration attribute)

 	missing (aspen.request_processor.dispatcher.DispatchStatus attribute)

 	mtime (aspen.request_processor.dispatcher.LiveDirectoryNode attribute)

N

 	
 	NegotiationFailure

 	
 	NotFound

O

 	
 	okay (aspen.request_processor.dispatcher.DispatchStatus attribute)

 	ones() (aspen.http.mapping.Mapping method)

 	
 	open_resource() (in module aspen.http.resource)

 	Output (class in aspen.output)

P

 	
 	params (aspen.http.request.PathPart attribute)

 	parse_into_pages() (aspen.simplates.simplate.Simplate method)

 	parts (aspen.http.request.Path attribute)

 	Path (class in aspen.http.request)

 	PathPart (class in aspen.http.request)

 	
 	pop() (aspen.http.mapping.Mapping method)

 	popall() (aspen.http.mapping.Mapping method)

 	PossibleBreakout

 	process() (aspen.request_processor.RequestProcessor method)

 	project_root (aspen.request_processor.DefaultConfiguration attribute)

Q

 	
 	Querystring (class in aspen.http.request)

R

 	
 	raw (aspen.http.request.Path attribute)

 	(aspen.http.request.Querystring attribute)

 	render() (aspen.http.resource.Dynamic method)

 	(aspen.http.resource.Static method)

 	render_content() (aspen.simplates.renderers.Factory.Renderer method)

 	(aspen.simplates.renderers.Renderer method)

 	
 	render_for_type() (aspen.simplates.simplate.Simplate method)

 	Renderer (class in aspen.simplates.renderers)

 	renderer_default (aspen.request_processor.DefaultConfiguration attribute)

 	RequestProcessor (class in aspen.request_processor)

 	resource_directories (aspen.request_processor.DefaultConfiguration attribute)

S

 	
 	Simplate (class in aspen.simplates.simplate)

 	simple() (aspen.testing.Harness method)

 	skip_hidden_files() (in module aspen.request_processor.dispatcher)

 	skip_nothing() (in module aspen.request_processor.dispatcher)

 	SlugCollision

 	split_path_no_params() (in module aspen.http.request)

 	
 	split_wildcard() (aspen.request_processor.dispatcher.Dispatcher method)

 	Static (class in aspen.http.resource)

 	status (aspen.request_processor.dispatcher.DispatchResult attribute)

 	store_static_files_in_ram (aspen.request_processor.DefaultConfiguration attribute)

 	strict_collision_handler() (in module aspen.request_processor.dispatcher)

 	strip_matching_ext() (in module aspen.request_processor.dispatcher)

 	SystemDispatcher (class in aspen.request_processor.dispatcher)

T

 	
 	teardown() (in module aspen.testing)

 	TestDispatcher (class in aspen.request_processor.dispatcher)

 	
 	type (aspen.request_processor.dispatcher.FileNode attribute)

 	TypecastError

 	typecasters (aspen.request_processor.DefaultConfiguration attribute)

U

 	
 	unindexed (aspen.request_processor.dispatcher.DispatchStatus attribute)

 	
 	UserlandDispatcher (class in aspen.request_processor.dispatcher)

W

 	
 	wildcard (aspen.request_processor.dispatcher.DirectoryNode attribute)

 	(aspen.request_processor.dispatcher.FileNode attribute)

 	(aspen.request_processor.dispatcher.LiveDirectoryNode attribute)

 	
 	WildcardCollision

 	wildcards (aspen.request_processor.dispatcher.DispatchResult attribute)

 	www_root (aspen.request_processor.DefaultConfiguration attribute)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Aspen

 		
 Filesystem Dispatch Rules

 		
 Dynamic Resources

 		
 Path Variables

 		
 Typecasting

 		
 Ready for Simplates?

 		
 How to Write a Simplate

 		
 Sections of a Simplate

 		
 Context

 		
 Standard Renderers

 		
 Specline Defaults

 		
 Content Negotiation

 		
 How to Write a Plugin

 		
 How to Write a Framework Wrapper

 		
 API Reference

 		
 aspen.http

 		
 aspen.request_processor

 		
 aspen.request_processor.dispatcher

 		
 aspen.request_processor.typecasting

 		
 aspen.simplates

 		
 aspen.output

 		
 aspen.testing

 		
 aspen.exceptions

